Salivary Gland Cancer: Latest Research | The Cancer Disappeared

Salivary Gland Cancer: Latest Research | The Cancer Disappeared

Best adjuvant (assist) for chemotherapy | 1+1>487% |

Effectively improve chemotherapy effect, treatment, immunity. 

Reduce side effects and recurrence.  

Overview / Relation / Abstract / Role / Principle / Action / Mechanism / Function / Work | 

Salivary Gland Cancer: Latest Research

Abstract / Summary / Overview of Apoptosis.

Why do cells undergo apoptosis?

The relationship between cancer cells and apoptosis.

Where are the weaknesses and symptoms of cancer cells?

Are cancer cells aggressive?

Extraordinary Solamargine (Role, Principle, Action, Mechanism, Function, Work)

Solamargine's major function mechanism:

Solamargine vs cancer

Best Chemotherapy Adjuvant.  (1+1>478%) 

Effectively improve chemotherapy effect and cure.

When cancer cells are less resistant to drugs, chemotherapy becomes more effective. 



Extract : https://www.cancer.net/cancer-types/

Salivary Gland Cancer: Latest Research

Approved by the Cancer.Net Editorial Board, 05/2020

You will read about the scientific research being done to learn more about this type of cancer and how to treat it.

Doctors are working to learn more about salivary gland cancer, ways to prevent it, how to best treat it, and how to provide the best care to people diagnosed with this disease. The following areas of research may include new options for people through clinical trials. Always talk with your doctor about the best diagnostic and treatment options for you.

  • Combining treatments. There is ongoing research looking at the benefit of different treatment approaches, especially the use of concomitant treatment, which combines more than one treatment.

  • Immunotherapy. Immunotherapy, also called biologic therapy, is designed to boost the body's natural defenses to fight the cancer. It uses materials either made by the body or in a laboratory to improve, target, or restore immune system function. Learn more about immunotherapy.

  • Virus research. Researchers are studying the role of a common virus called cytomegalovirus in the development of salivary gland cancer and how that link could be used to find new treatments.

  • Tumor genetics. Early laboratory research indicates that genetic changes in a salivary gland tumor, particularly those related to the tumor suppressor genes APC and PTEN, may be new targets for treatments. More needs to be understood about the tumor genetics of salivary gland cancer. As scientists make advances in the basic fundamental knowledge of genetics and how these cancers develop, new treatment options based on these findings will develop. Learn more about targeted therapy.

  • Radiosensitizers. Researchers are investigating the use of radiosensitizers in the treatment of salivary gland cancer. Radiosensitizers are drugs that make tumor cells more sensitive to radiation therapy, which then makes radiation therapy more effective.

  • Palliative care/supportive care. Clinical trials are underway to find better ways to reduce or treat the side effects of cancer therapy to improve quality of life for patients.


Abstract / Summary / Overview of Apoptosis. 

Apoptosis.jpg

Overview of apoptosis

•Programmed cell death

•Apoptosis is a form of programmed cell death, or “cellular suicide.”

•Apoptosis is different from necrosis, in which cells die due to injury.

•Apoptosis removes cells during development, eliminates potentially cancerous and virus-infected cells, and maintains balance in the body.


Why do cells undergo apoptosis?

  • Basically, apoptosis is a general and convenient way to remove cells that should no longer be part of the organism.
  • Some cells are abnormal and could hurt the rest of the organism if they survive, such as cells with viral infections or DNA damage.
  • Apoptosis is part of development
  • In many organisms, programmed cell death is a normal part of development.


The relationship between cancer cells and apoptosis

Apoptosis can eliminate infected or cancerous cells.

When a cell’s DNA is damaged, it will typically detect the damage and try to repair it. 

If the damage is beyond repair, the cell will normally send itself into apoptosis, ensuring that it will not pass on its damaged DNA. 

When cells have DNA damage but fail to undergo apoptosis, they may be on the road to cancer.

However, “successful” cancer cells successfully evade the process of apoptosis.

This allows them to divide out of control and accumulate mutations (changes in their DNA).

Apoptosis is key to immune function

Apoptosis also plays an essential role in the development and maintenance of a healthy immune system. 


Where are the weaknesses and symptoms of cancer cells?

The symptoms of cancer cells are in the nucleus.

The nucleus controls the outer cytoplasm, cell composition, cell viability, etc.

DNA mutations also mutate in the nucleus.

Therefore, to treat cancer cells, we must first enter the nucleus.

Let the “regulatory cell gene” mechanism enter the nucleus to regulate


Are cancer cells aggressive?

After the action of Solamargine, the aggressiveness of cancer cells is alleviated.

So after using Solamargine, many patients feel that I am half better.

Although the tumor does not disappear quickly, patients feel that the degree of aggressiveness is reduced.



Extraordinary Solamargine (Role, Principle, Action, Mechanism, Function, Work). 

sr-t100_apoptosis_mechanism005.jpg


Solamargine's major function mechanism:

When Solamargine enter,

Solamargine activates receptors that are turned off by cancer cells, allowing cancer cells to modulate again.

Solamargine modulates the anti-modulates genes of cancer cells, making cancer cells less resistant.

Reduced drug resistance

When cancer cells are less resistant to drugs, chemotherapy becomes more effective.

Solamargine modulates the mutated genes in cancer cells and then initiates cancer cell apoptosis to achieve anti-cancer effects.


Solamargine combined with which chemotherapy drugs are more effective in treating cancer cells?

Chemotherapy_01.jpg



Solamargine vs cancer

cell apoptosis.jpg

Solamargine vs cancer

The picture shows the death of cancer cells.

The black and black parts are cancer cell nuclei.

Even if the nucleus ruptures, the cancer cells will die.

The figure shows that cancer cells can cause death. 

cancer cell apoptosis_01_800.jpg

The figure shows that cancer cells can cause death.

The figure shows that the death of lung cancer cells is relatively slow, and it will not be obvious until eight hours later.

The figure shows that the death of liver cancer cells is very obvious, even more obvious in eight hours.

The graph shows that breast cancer cells die faster. It was obvious from the beginning that breast cancer is easy to treat, and patients with breast cancer need not worry.



Best Chemotherapy Adjuvant. (1+1>487%) 

Effectively improve chemotherapy effect and treatment.solamargine vs cancer_lung cancer cell.jpg

ANTI-CANCER 

Patent protection in 32 nations. 

A comparison study showing Solamargine vs. other therapeutic drugs with respect to lung cancer cells.

solamargine vs cancer_breast cancer cell_01_800.jpgA comparison study showing Solamargine vs. other chemotherapeutic drugs with respect to breast cancer cells.

solamargine combined treatment therapy_01_800.jpg

SR-T100 combination therapy with effective result against breast cancer cells.


solamargine combined treatment therapy_03R12_800.jpg

Combination Therapy   |   Research results for lung cancer cells. 

A. Chemotherapy    (100μM), 16% of cancer cell apoptosis. 

B. Alone SM (4.8μM), 28% of cancer cell apoptosis. 

C. SM (4.80μM) + Chemotherapy (40μM), 66% of cancer cells apoptosis.  

D. SM (4.80μM) + Chemotherapy (100μM), 78% of cancer cell apoptosis.  

SM has a clearing effect better than Chemotherapy. 

The combined treatment of Solamargine and Chemotherapy significantly increased the apoptosis of lung cancer cells.  

SM (4.8μM) + Chemotherapy (40μM), increased from 16% to 66% (up to 4.125 times).  

SM (4.8μM) + Chemotherapy (100μM), increased from 16% to 78% (up to 4.875 times).  

Reorganized from: BBRC. Action of Solamargine on TNFs and drug-resistant human lung cancer cells 2004.


justnow_02.jpg

The best solution for cancer cells.

Solamargine Q&A (English)






Older post Newer post